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TECHNICAL NOTES
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NOMENCLATURE

B,  applied magnetic field

C concentration of the solute, C(t, x, y)

C*  constant related to radiation appearing in ref. [4]
asC

C%*  constant defined by equation (1)

F radiation parameter

g gravitational acceleration

L half-width of channel

M Hartmann number

N vertical temperature gradient

Ra  Rayleigh number,

Greek symbols

thermal diffusivity

volumetric expansion coefficient
magnetic permeability
kinematic viscosity

electrical conductivity

reference density.
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INTRODUCTION

THE sTUDY of hydromagnetic convection with heat transfer is
very important in the design of MHD generators, cross-field
accelerators, shock tubes, pumps and cooling systems of
reactors and many other fields of technology. For this reason
such flows have been investigated by several authors. A
comprehensive review of these works hasbeen giveninref. [1].
Gershuni and Zhukhovitskii [2] investigated convective
MHD flow in a vertical channel when the wall temperatures
were constant while Yu [3] investigated the same problem
when the plate temperature varies linearly with vertical
distance. All these authors took a transverse magnetic field
and neglected heat transfer by radiation. But for similar
problemsconcerned with space application as well as those for
which operating temperatures are very high, heat transfer by
radiation should not be neglected. Gupta and Gupta [4]
extended the problem of Yu [3] to include the radiation effect.
For measuring flow rate, velocity etc. tracer elements were
introduced into the flows and the study of dispersion of these
solutes introduced is therefore very important. Such studies
were initiated by Taylor [5, 6], and Aris [7]. Mazumdar [8]
studied Taylor diffusion for a natural convective flow through
a vertical channel when the plate temperature varies linearly
with vertical distance. However, he took neither magnetic field
nor radiation into account. Mandal et al. [9] extended the
work of Mazumdar [8] toinclude theeffect of radiation as well
as the magnetic field taking the fluid to be electrically con-
ducting. Both Mazumdar [8] and Mandal et al. [9] worked
out long time analysis of their problems following the work
of Aris [7].

The aim of this note is to study an exact analysis of the
unsteadydispersionof asoluteinaconvectiveradiating MHD
flow of a fluid through a vertical channel with linearly varying

wall temperatures using the Gill and Sankarasubramanian
[10] model. This analysis is valid for all time.

ANALYSIS

We consider the steady laminar free and forced convective
flow of an electrically conducting incompressible viscous fluid
between two infinite electrically non-conducting parallel
vertical plates y = 4 Lin the presence of a uniform transverse
magnetic field B, along the y-axis when the wall temperature
varies linearly with vertical distance. The velocity profile for
such a flow has been derived by Gupta and Gupta [4] in the
form
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where
k, = [(F+M%)/2+ {(F— M?)? —4 Ra}"12)2]'2,
ky = [(F+M?/2—{(F—M?*?—4 Ra}"1?j2]'2, 2

F = I}C*Ja, M = B,L(s/pv)'/?, Ra=gpNI}/vz.

If a solute diffuses in the above fully developed flow, the
concentration C(t, x, y) of the solute satisfies the equation
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where

is the mean velocity and C, is the concentration of the initial
slug input satisfying

C0,x,y) = C, for |x| < ix,,
and (5)
C(0,x,5) =0

We now define a new axial coordinate moving with t}}c
average velocity i of the flow as x; = x—it,ie.{ = X —71in
dimensionless form.

for |x] > ¥x,.
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Usingequations(l)and (4)in equation (3)and transforming
to the (1, &, 1) coordinate system, we obtain
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The boundary and initial conditions for equation (6) are
co c0
—@X,~) ==X, +1) =0,
én on
0(z,00,n) =0,
Q]

00,X,n)=1 for |X|<iX,,

and
000,X,n) =0 for|X|>1X,,
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We now assume that the solution of equation (6) can be
written in the form

0 = 0ulr,O)+ Z Jils, 71)

1
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Then following Gill and Sankarasubramanian {10], we
assume that the process of distributing 0, is diffusive in nature
right from time zero (unlike that in the Taylor model) and
introduce the generalized dispersion model with the time-
dependent dispersion coefficient as

a,:* ’
®
0 dn.
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where the first two conditions are consistent with no mass - = z K (T) ©)
transfer at the channel walls. ot
From equations (6)-(9) we get K,(r) = 0 and
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F1G. 3. Plot of [K y(r)— Pe~2] vs 1 for several values of M2, F and Ra.
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RESULTS AND DISCUSSIONS

Weassume that, asin other cases K4(tr)ismuch smaller than
K (z) in this case also, and thus we confined ourselves to the
discussion on K,(t) only.

In the asymptotic case when t — co we have calcnlated the
diffusion coefficient [K ,(t) — Pe~2] [for various values of the
Hartmann number (M), radiation parameter (F) and Rayleigh
number (Ra)] and have plotted them against F and Ra'’*,
respectively,in Figs. 1 and 2. It isinteresting to note that these
graphs coincide with the corresponding graphs of the effective
Taylor diffusion coefficient calculated with the Taylor model
by Mandal et al.[9]. This further strengthens the use of the Gill
and Sankarasubramanian model and treats K,(t)—Pe™2 as
the diffusion coefficient. Following Kay [11], and Grief et al.
[12] we worked out all calculations taking Ra'/* in the range
0-10°.

Figure I shows that the diffusion coefficient is very sensitive
to any change in the value of Ra'/* independently of the value
of f; 4and M namely it decreases rapidly with a decrease in
Ra'’*,

Figure 2 shows that the diffusion coefficient has a minimum
value at Ra'* = r_, where r,, lies between 0 and 10 depending
on the value of F. When Ra'* > r,_, a change in F drastically
changes the diffusion coefficient. However, when Ra'/* <r,
the effect of F is not so significant. Thus in the experimentally
observed range (10-10%) as indicated by Kay {11] the role of
the radiation parameter F is very important. However, it is
clear from both Figs. 1 and 2 that with anincrease in radiation
the diffusion coefficient decreases. This is due to the fact that
due to loss of energy by radiation the velocity decreases and
thereby the diffusion coefficient also decreases. Figures 1 and 2
both show that the role of M is not very significant in com-
parison with those of Ra'/* and F.

In Figure 3 we have plotted [K,(t)—Pe~?] against 7 for
various values of F, Ra'/* and M. The asymptotic value of
[K,(t)—Pe~?] is reached at a time 1 of O(1) and this
attainmentisindependent of all parameters. In the initial stage
the effects of the parameters are similar to those in the
asymptotic case.
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NOMENCLATURE

D outside diameter of tube [m]}

G mass velocity [kgs™' m~?]

h heat transfer coefficient [W m~2 K~!]

k thermal conductivity of fluid [W m™* K~']
n index in the Kutateladze equation (1)

Pr Prandtl number of fluid

q heat flux [W m~2]

T temperature [K]

AT  wall superheat [K].

Greek symbol
u dynamic viscosity of fluid [kgm~!s™'].

Subscripts
b pool boiling
F condition at mean film temperature
f forced convection
fb forced convection boiling
s saturation condition
w heated surface condition.

INTRODUCTION

CrossrLOW boiling has not been adequately investigated. A
fewinvestigators [ 1-4] who have worked on crossflow boiling
have experimentally studied the phenomenon with water at





