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TECHNICAL NOTES

EXACT ANALYSIS OF CONVECTIVE DIFFUSION OF A SOLUTE IN MHD
RADIATING CONVECTIVE FLOW IN A VERTICAL CHANNEL

K. K. MAl-mAL and G. MANDAL

Department of Mathematics, University of Burdwan, Burdwan 713104, India

(Receired 1 September 1982and in retised form 10 January 1983)

NOMENCLATURE

Bo applied magnetic field
C concentration of the solute, C(t,x,y)
C* constant related to radiation appearing in ref. [4]

as C
q constant defined by equation (1)
F radiation parameter
9 gravitational acceleration
L half-width of channel
M Hartmann number
N vertical temperature gradient
Ra Rayleigh number.

Greek symbols
Cl thermal diffusivity
p volumetric expansion coefficient
II magnetic permeability
v kinematic viscosity
a electrical conductivity
p reference density.

wall temperatures using the Gill and Sankarasubramanian
[10] model. This analysis is valid for all time.

ANALYSIS

We consider the steady laminar free and forced convective
flow ofan electrically conducting incompressible viscous fluid
between two infinite electrically non-conducting parallel
vertical plates y = ±L in the presence ofa uniform transverse
magnetic field Boalong the y-axis when the wall temperature
varies linearly with vertical distance. The velocity profile for
such a flow has been derived by Gupta and Gupta [4] in the
form

where
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is the mean velocity and Co is the concentration of the initial
slug input satisfying

C(O,x,y) = Co for [x] ~ ,!x••

~ W
C(O,x,y) = 0 for Ixl> !x,.

We now define a new axial coordinate moving with the
average velocity ii of the flow as XI = x-iit, i.e. ~ = X -T in
dimensionless form.

k l = [(F+ M2)/2+{{F_M2)2_4 Ra}1/2/2J1/2,

k2 = [(F+M2)/2-{{F-M2)2-4Ra}i /2/2]1I2,

F = ec-t« M = BoL{a/pv)1/2, Ra = gPNIJ/\-:t..

If a solute diffuses in the above fully developed flow, the
concentration C(t, x, y) of the solute satisfies the equation

ec ec (o2c 02C)
-+u-=D -+-.
Ct x ox ox2 oy2

We introduce the dimensionless variables

INTRODUCTION

THE STUDY of hydro magnetic convection with heat transfer is
very important in the design of MHD generators, cross-field
accelerators, shock tubes, pumps and cooling systems of
reactors and many other fields of technology. For this reason
such flows have been investigated by several authors. A
comprehensive reviewofthese works has been given in ref.[1].
Gershuni and Zhukhovitskii [2] investigated convective
MHD flow in a vertical channel when the wall temperatures
were constant while Yu [3] investigated the same problem
when the plate temperature varies linearly with vertical
distance. All these authors took a transverse magnetic field
and neglected heat transfer by radiation. But for similar
problems concerned with space application as wellas those for
which operating temperatures are very high, heat transfer by
radiation should not be neglected. Gupta and Gupta [4]
extended the problem ofYu [3] to include the radiation effect.
For measuring flow rate, velocity etc. tracer elements were
introduced into the flows and the study of dispersion of these
solutes introduced is therefore very important. Such studies
were initiated by Taylor [5, 6], and Aris [7]. Mazumdar [8]
studied Taylor diffusion for a natural convective flow through
a vertical channel when the plate temperature varies linearly
with vertical distance. However, he took neither magnetic field
nor radiation into account. Mandai et ai, [9] extended the
work ofMazumdar [8] to include the effectof radiation as well
as the magnetic field taking the fluid to be electrically con­
ducting. Both Mazumdar [8] and Mandal et al. [9] worked
out long time analysis of their problems following the work
of Aris [7].

The aim of this note is to study an exact analysis of the
unsteady dispersion ofa solute in a convective radiating MHD
flowof a fluid through a vertical channel with linearly varying
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O(O,X,11l = 0 for IXI> !X"
where the first two conditions are consistent with no mass
transfer at the channel walls.

(8)

(9)

We now assume that the solution of equation (6) can be
written in the form

Om=.!.fl Odlj.
2 _I

Then following Gill and Sankarasubramanian [10], we
assume that the process of distributing Om is diffusivein nature
right from time zero (unlike that in the Taylor model) and
introduce the generalized dispersion model with the time­
dependent dispersion coefficient as

(7)

and

Using equations (1) and (4)in equation (3)and transforming
to the (t,e, II) coordinate system, we obtain

cO ll~-U cO 1 020 020

at+ -----a- o~ = Pe2 ae2 + C112' (6)

The boundary and initial conditions for equation (6)are

cO CO
~(t,X, -1) =~(t,X, + I) = 0,
en CII

Ott,00, Ij) = 0,

O(O,X,Ij)= I for IXI~ !X"

(10)

where

(11)
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RESULTS Al"D DISCUSSIO;,\S

We assume that, as in other cases K lr) is much smaller than
Kit) in this case also, and thus we confined ourselves to the
discussion on K 2(t ) only.

In the asymptotic case when r --+ 00 we have calculated the
difTusion coefficient [K2(t) - Pe" 2] [for various values of the
Hartmann number (M), radiation parameter(F) and Rayleigh
number (Ra)] and have plotted them against F and'Ral/",
respectively, in Figs. I and 2. It is interesting to note that these
graphs coincide with the corresponding graphs of the effective
Taylor diffusion coefficient calculated with the Taylor model
by Mandai et al. [9]. This further strengthens the use of the Gill
and Sankarasubrarnanian model and treats Kit)-Pe- 2 as
the diffusion coefficient. Following Kay [II], and Grief et al.
[12] we worked out all calculations taking Rail" in the range
0-102

•

Figure I shows that the diffusion coefficient is very sensitive
to any change in the value of Ra l ' " independently of the value
of F and M namely it decreases rapidly with a decrease in
Ra

l
' ''.

Figure 2 shows that the difTusion coefficient has a minimum
value at Ra'!" = rm where rm lies between 0 and 10 depending
on the value of F. When Ra l

' " > rm a change in F drastically
changes the difTusion coefficient. However, when Ra l

' " < r m

the efTect of F is not so significant. Thus in the experimentally
observed range (10-102

) as indicated by Kay [11] the role of
the radiation parameter F is very important. However, it is
clear from both Figs. I and 2that with an increasein radiation
the diffusion coefficient decreases. This is due to the fact that
due to loss of energy by radiation the velocity decreases and
thereby the difTusioncoefficient also decreases. Figures 1 and 2
both show that the role of M is not very significant in com­
parison with those of Ra'!" and F.

In Figure 3 we have plotted [K2(t)-Pe-
2] against r for

various values of F, Ra'!" and M. The asymptotic value of
[Kit)-Pe- 2

] is reached at a time r of 0(1) and this
attainment is independent of all parameters. In the initial stage
the efTects of the parameters are similar to those in the
asymptotic case.
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NOMENCLATURE

D outside diameter of tube Em]
G mass velocity jkg s t l m t i]
h heat transfer coefficient [W m - 2 K -I]
k thermal conductivity of fluid [W m -I K -I]
n index in the Kutateladze equation (I)
Pr Prandtl number of fluid
q heat flux [W m- 2

]

T temperature [K]
f,.T wall superheat [K].

Greek symbol

JI dynamic viscosity of fluid [kg m - I S-1].

Subscripts

b pool boiling
F condition at mean film temperature
f forced convection
fb forced convection boiling
s saturation condition
w heated surface condition.

Il'.'TRODUCfION

CROSSFLOW boiling has not been adequately investigated. A
few investigators [1-4] who have worked on crossflow boiling
have experimentally studied the phenomenon with water at




